Files
microservicios_python/src/app.py
2025-12-21 13:45:47 +01:00

300 lines
10 KiB
Python

from flask import Flask, jsonify, request
import threading
import os
from datetime import datetime
from dotenv import load_dotenv
from core.model_loader import ModelManager
from core.predictor import PredictionHandler
from core.model_trainer import ModelTrainer
from config.models_config import ModelConfig
app = Flask(__name__)
# Configuración desde variables de entorno
load_dotenv()
DEBUG_MODE = os.getenv('FLASK_DEBUG', 'false').lower() in ('true', '1', 't')
PORT = int(os.getenv('FLASK_PORT', '5000'))
HOST = os.getenv('FLASK_HOST', '0.0.0.0')
# Inicializar componentes
model_config = ModelConfig()
model_manager = ModelManager(model_config, debug_mode=DEBUG_MODE)
prediction_handler = PredictionHandler(model_manager, model_config)
model_trainer = ModelTrainer(model_manager, model_config)
# Función de debug
def debug_check_functions():
"""Verificar que todas las funciones existen (solo en modo debug)"""
if DEBUG_MODE:
import importlib
from utils.dynamic_loader import execute_function
print("=" * 50)
print("DEBUG: Verificando funciones de modelos")
print("=" * 50)
for model_type in model_config.get_all_model_types():
config = model_config.get_model_config(model_type)
print(f"\nModelo: {model_type}")
print(f" Descripción: {config.get('description', 'Sin descripción')}")
print(f" Módulo: {config.get('module')}")
print(f" Función entrenamiento: {config.get('train_function')}")
print(f" Función datos: {config.get('data_function')}")
print(f" Parámetros requeridos: {config.get('required_params', [])}")
# Verificar que la función de entrenamiento existe
try:
module = importlib.import_module(config.get('module'))
if hasattr(module, config.get('train_function')):
print(f" ✓ Función de entrenamiento encontrada")
else:
print(f" ✗ Función de entrenamiento NO encontrada")
# Listar funciones disponibles en el módulo
available_funcs = [f for f in dir(module) if not f.startswith('_')]
print(f" Funciones disponibles: {', '.join(available_funcs[:10])}")
if len(available_funcs) > 10:
print(f" ... y {len(available_funcs) - 10} más")
except ImportError as e:
print(f" ✗ Error importando módulo: {str(e)}")
except Exception as e:
print(f" ✗ Error: {str(e)}")
print("\n" + "=" * 50)
print(f"DEBUG: Inicializando {len(model_config.get_all_model_types())} modelos")
print("=" * 50)
# Inicializar modelos al arrancar
model_manager.init_models()
# Ejecutar chequeo de debug si está activado
debug_check_functions()
@app.route("/train", methods=["POST"])
def train():
"""Entrenar modelos"""
model_type = request.args.get('model_type')
# Validar que el tipo de modelo existe
if model_type and not model_config.model_exists(model_type):
return jsonify({
"error": f"Model type '{model_type}' not found",
"available_models": model_config.get_all_model_types()
}), 400
threading.Thread(target=model_trainer.background_train, args=(model_type,)).start()
return jsonify({
"status": "training started",
"model_type": model_type or "all",
"timestamp": datetime.now().isoformat()
})
@app.route("/predict", methods=["GET"])
def predict():
"""Endpoint único para predicciones"""
return prediction_handler.handle_predict_request(request.args)
@app.route("/demand", methods=["GET"])
def demand():
"""Endpoint para obtener todas las predicciones"""
return prediction_handler.handle_demand_request(request.args)
@app.route("/models/register", methods=["POST"])
def register_new_model():
"""Registrar un nuevo tipo de modelo dinámicamente"""
data = request.get_json()
try:
new_config = model_config.register_model_type(data)
if DEBUG_MODE:
print(f"DEBUG: Nuevo modelo registrado - {data['type']}")
print(f" Configuración: {new_config}")
return jsonify({
"status": "model type registered",
"model_type": data["type"],
"config": new_config
})
except ValueError as e:
return jsonify({"error": str(e)}), 400
except Exception as e:
return jsonify({"error": f"Registration failed: {str(e)}"}), 500
@app.route("/models", methods=["GET"])
def list_models():
"""Listar todos los modelos disponibles"""
models_info = []
for model_type in model_config.get_all_model_types():
model = model_manager.get_model(model_type)
model_config_info = model_config.get_model_config(model_type)
model_info = {
"type": model_type,
"description": model_config_info.get("description", ""),
"loaded": model is not None,
"required_params": model_config_info.get("required_params", []),
"module": model_config_info.get("module"),
"train_function": model_config_info.get("train_function"),
"output_type": model_config_info.get("output_type", "unknown")
}
# Añadir información del archivo si existe
from model_registry import load_meta
meta = load_meta()
if model_type in meta.get("current", {}):
model_info["file"] = meta["current"][model_type]
models_info.append(model_info)
return jsonify({
"available_models": models_info,
"total": len(models_info)
})
@app.route("/health", methods=["GET"])
def health():
"""Endpoint de salud"""
loaded_models = model_manager.get_loaded_models_status()
all_models = model_config.get_all_model_types()
response = {
"status": "healthy" if all(loaded_models.values()) else "partial",
"models_loaded": loaded_models,
"total_configured": len(all_models),
"loaded_count": sum(1 for v in loaded_models.values() if v),
"debug_mode": DEBUG_MODE
}
if DEBUG_MODE:
response["environment"] = {
"host": HOST,
"port": PORT,
"python_version": os.getenv("PYTHON_VERSION", "unknown")
}
return jsonify(response)
@app.route("/debug", methods=["GET"])
def debug_info():
"""Endpoint de información de debug (solo disponible en modo debug)"""
if not DEBUG_MODE:
return jsonify({"error": "Debug mode is disabled"}), 403
import sys
import importlib
# Información del sistema
system_info = {
"python_version": sys.version,
"platform": sys.platform,
"working_directory": os.getcwd(),
"environment_variables": {
k: v for k, v in os.environ.items()
if k.startswith(('FLASK_', 'DB_', 'PYTHON'))
}
}
# Información de módulos cargados
loaded_modules = {}
for model_type in model_config.get_all_model_types():
config = model_config.get_model_config(model_type)
module_name = config.get('module')
if module_name in sys.modules:
module = sys.modules[module_name]
loaded_modules[module_name] = {
"file": getattr(module, '__file__', 'unknown'),
"functions": [f for f in dir(module) if not f.startswith('_')]
}
# Información de memoria de modelos
models_memory = {}
for model_type, model in model_manager.models_cache.items():
if model is not None:
try:
models_memory[model_type] = {
"type": type(model).__name__,
"attributes": [attr for attr in dir(model) if not attr.startswith('_')]
}
except:
models_memory[model_type] = {"type": "unknown"}
return jsonify({
"system": system_info,
"loaded_modules": loaded_modules,
"models_in_memory": models_memory,
"debug_mode": DEBUG_MODE,
"timestamp": datetime.now().isoformat()
})
@app.route("/", methods=["GET"])
def index():
"""Página principal con documentación"""
endpoints = [
{
"path": "/predict",
"method": "GET",
"description": "Realizar predicción",
"parameters": "model_type (required), otros según modelo"
},
{
"path": "/demand",
"method": "GET",
"description": "Obtener predicciones masivas",
"parameters": "model_type (required), limit (opcional)"
},
{
"path": "/train",
"method": "POST",
"description": "Entrenar modelos",
"parameters": "model_type (opcional)"
},
{
"path": "/models",
"method": "GET",
"description": "Listar modelos disponibles"
},
{
"path": "/models/register",
"method": "POST",
"description": "Registrar nuevo tipo de modelo"
},
{
"path": "/health",
"method": "GET",
"description": "Estado del sistema"
}
]
if DEBUG_MODE:
endpoints.append({
"path": "/debug",
"method": "GET",
"description": "Información de debug",
"note": "Solo disponible en modo debug"
})
return jsonify({
"service": "Model Prediction API",
"version": "1.0.0",
"debug_mode": DEBUG_MODE,
"endpoints": endpoints,
"available_models": model_config.get_all_model_types()
})
if __name__ == "__main__":
print(f"🚀 Iniciando servidor en {HOST}:{PORT}")
print(f"🔧 Modo debug: {'ACTIVADO' if DEBUG_MODE else 'DESACTIVADO'}")
print(f"📊 Modelos configurados: {len(model_config.get_all_model_types())}")
if DEBUG_MODE:
print("\n📋 Variables de entorno relevantes:")
for key, value in os.environ.items():
if key.startswith(('FLASK_', 'DB_')):
print(f" {key}: {value}")
app.run(host=HOST, port=PORT, debug=DEBUG_MODE)